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Outline

1. Overview on the Universe 

2. Newtonian Mechanics 

1. Hydrostatic Equilibrium 

2. The Virial Theorem  

3. The Jeans Criterion 

4. Free-Fall Time
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1. Galaxy rotation curves 

2. Beyond Newtonian Cosmology 

1. Relativity 

2. Standard Cosmology 

3. Theories of modified gravity 

3. Cosmological Simulations

PART 1 PART 2
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Who am I?
• Postdoc in the Chemical Evolution of Galaxies 

at Wuhan University, China 

• PhD from University of Trieste, Italy: included 
a Dust Evolution model in Cosmological 
Simulations of Galaxy Clusters 

• Undergraduate research at IIT and Argonne 
National Lab in Chicago: Supernova 
Cosmology  

selection algorithm efficiency for DES 

filter transmission efficiency for LSST 

modified gravity vs quintessence theory
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• Postdoc in the Chemical Evolution of Galaxies 
at Wuhan University, China 

• PhD from University of Trieste, Italy: included 
a Dust Evolution model in Cosmological 
Simulations of Galaxy Clusters 

• Undergraduate research at IIT and Argonne 
National Lab in Chicago: Supernova 
Cosmology  

selection algorithm efficiency for DES 

filter transmission efficiency for LSST 

modified gravity vs quintessence theory
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Size of the Universe
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https://www.htwins.net/scale2/

EDA GJERGO — WUHAN UNIVERSITY — APPLICATIONS OF NEWTONIAN MECHANICS IN ASTRONOMY — SEPTEMBER 10TH, 2020

Scale of Cosmic Objects

https://www.htwins.net/scale2/
https://www.htwins.net/scale2/
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Our Universe

Image Credit: NASA/WMAP Science team. Edit: Subaru Prime Focus Spectrograph



The composition of the Universe changed with time
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The composition of the Universe changed with time
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Our Galaxy: the Milky Way

https://astrobob.areavoices.com
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Our Galaxy: the Milky Way

The Milky Way observed at different wavelengths
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Our Galaxy: the Milky Way

Image Credit: Stefan Payne-Wardenaar. Data: ESA/GAIA
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(J. Skowron / OGLE / Astronomical Observatory, University of Warsaw)

Video of the Milky Way Warp: the dynamics of our galaxy is very 
much active!



First Example of Classical Mechanics 
In Astrophysics

HOW ARE STARS HELD TOGETHER
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What holds stars together?

Credit: Brian Woodahl (http://woodahl.physics.iupui.edu/Astro105/)

• An equilibrium 
between forces of 
pressure and gravity



EDA GJERGO — WUHAN UNIVERSITY — APPLICATIONS OF NEWTONIAN MECHANICS IN ASTRONOMY — SEPTEMBER 10TH, 2020

Forces on a small mass component within stars

• We assume spherical symmetry 
in the following computation.  

• The cylinder represents an 
infinitesimal volume of a star 

• The bottom is closer to the center 
of the star, the top is closer to the 
surface. 

• The bottom surface of the 
cylinder is at a distance  from the 
center of the star. 

• (it is drawn as a cylinder, but the 
derivation holds for any shape)

r

Image Credit: Chris Mihos (http://burro.cwru.edu/Academics/Astr221)
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Forces on a small mass component within stars

• This volume of star perceives 
pressure from top and bottom 

• (we ignore the pressure from 
the sides: due to homogeneity 
the forces cancel out) 

• It is also subject to gravity 
toward the center of the star. 

• We can define the mass  of 
this element as a product 
between its density and 
volume 

m

ρ
V = drdA

Image Credit: Chris Mihos (http://burro.cwru.edu/Academics/Astr221)
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Forces on a small mass component within stars

• The net forces on this mass elements 
are zero, therefore:

Image Credit: Chris Mihos (http://burro.cwru.edu/Academics/Astr221)

P(r)dA − P(r + dr)dA − Fgrav = 0

−[P(r + dr) − P(r)]dA − mag = 0

−dPdA − [ρ(g)(drdA)] g(r) = 0
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Hydrostatic Equilibrium

dP = − g(r)ρ(r)dr
• Both  — the gravitational acceleration —, and  — the star’s density — are 
positive 

• So the pressure decreases with increasing radius (the closer to the center, 
the higher the pressure) 

• But  can also be expressed as:

g ρ

g

Fgrav = mg(r) =
GmM(r)

r2
→ g(r) =

GM(r)
r2
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The Virial Theorem Derivation 
• Multiply both sides by the volume of a sphere of radius . 

•  

• How would you express the rate of change of the mass inside a spherical 
shell between  and ?

r

V =
4
3

πr3

r r + dr

dM = ρ(r)(4πr2dr)
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The RHS: substitute volume, acceleration, and differential

VdP = − ( 4
3

πr3) ρ(r)( GM(r)
r2 ) ( dM

4πr2ρ(r) )
• We substitute the radius-dependent expression for volume, the 
gravitational acceleration , and we switch the differential from radius  
to mass .

g(r) dr
dM

VdP = −
GM(r)

3r
dM

• Now change variables the right hand side (RHS) for 
the differential from radius  to mass . 

• But the integral of the RHS is proportional to the 
gravitational potential energy 

dr dM

Ugrav Ugrav = − ∫
Mstar

0

GM(r)
r

dM
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Gas, thermal energy, and pressure: simplifying the LHS

VdP = −
1
3

GM(r)
r

dM

• How can we tackle the pressure differential in the left hand side (LHS)?  
• Integrate  by parts.VdP

∫
0

P0

VdP . = PV |surface
center − ∫

Vsurface

0
PdV

• We can now integrate w.r.t. volume instead of pressure.
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A bit of statistical physics

• What relation holds in an ideal gas between 
pressure , volume , temperature , and number 
of particles ?

P V T
N

∫
Vtot

0
PdV = ∫

Vtot

0

kNT
V

dV =
2
3 ∫

Vtot

0
ϵdV

•  

• Where  
is the Boltzmann constant.

P =
kNT

V
k = 1.380658 × 10−9J/K

ϵ =
3
2

kT
N
V

• So it follows that the LHS:

• The equipartition theorem relates the average 
kinetic energy density  of particles in a gas at 
temperature  with:

ϵ
T
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Virial Theorem: Putting it all together
• The integral is none other than the 
total thermal energy  of the star:K

VdP = − ∫
Vtot

0
PdV = −

2
3

K

• While the RHS:
−

1
3 ∫

Mstar

0

GM(r)
r

dM =
1
3

Ugrav

• Combining the two:

2K + Ugrav = 0

K = ∫
Vtot

0
ϵdV

• So the LHS:



EDA GJERGO — WUHAN UNIVERSITY — APPLICATIONS OF NEWTONIAN MECHANICS IN ASTRONOMY — SEPTEMBER 10TH, 2020

The Virial Theorem 
2Ktherm + Ugrav = 0

• Comes up over and over in astrophysical systems. 
• Governs gravitational collapse of gas 
• Determines the minimum mass of a star 
• Helps compute the total mass of galaxies  
  (analytic solutions for spirals and ellipticals) 
• Governs timescales of structure formation

• It also has limitations 
• I applies only to systems of 

point particles.  
• I t does not apply to 

particles that are not 
gravitationally bound.
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Example to work out in class

Calculate the potential gravitational energy 
of a star of mass  and radius  assuming 

it possesses a constant density 
M* R*

ρ

Gjergo Eda
See companion handout for sources
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Solution

HINTS 
• How do you express the gravitational energy? 
• What is the average density within the radius ? 
• From the previous equation, how can you express ? 
• Write the gravitational energy in terms of  and 
solve the integral. 

• Given that we assume the density is constant, how 
would you express it in terms of total mass and radius 
of the star? 

• Put it all together to answer the problem

r
r

M(r)

Ugrav = − ∫
Mstar

0

GM(r)
r

dM

ρ̄(r) =
M(r)
4
3 πr3

→ r =
M(r)
4
3 πρ

1/3

Ugrav = −
3
5

GM2
*

R*

Calculate the potential gravitational energy of 
a star of mass  and radius  assuming it 

possesses a constant density 
M* R*

ρ



Second Example of Classical Mechanics 
In Astrophysics

UNDER WHICH PHYSICAL CONDITIONS DOES A FLUID  
(LIKE AN INTERSTELLAR CLOUD) COLLAPSE?
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• When will gravitational energy 
dominate over thermal energy?

−Ugrav > 2K

• Under this condition, how will the 
cloud behave?

To answer the question: 
Apply the Virial Theorem!

 It will collapse

• How do we express the gravitational 
potential energy, assuming homogeneous 
density? Ugrav = −

3
5

GM2
*

R*
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• Again, from the equipartition theorem:

• We can express the number of particles  
as a function of the mean molecular 
weight .  is the weight of a Hydrogen 
atom

N

μ mH

What about the thermal energy?

K =
3
2

kNT

N =
M

μmH

• From the previous exercise, what is  for 
this isothermal gas at uniform density? 

R R =
M(r)
4
3 πρ

1/3
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The Jeans Criterion
• Let’s write the Virial Theorem, 
substituting these quantities:

−Ugrav > 2K

3
5

GM2

R
>

3
2

kNT

3
5

GM2 M(r)
4
3 πρ

−1/3

>
3MkT
μmH

• Lastly, by isolating , we obtain 
the Jeans criterion:

M

M > MJ = ( 5kT
μmHG )

3/2

( 3
4πρ )

1/2

• Or equivalently for density:

ρ > ρJ = ( 5kT
μmHG )

3

( 3
4πM2 )
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In-class exercise: derive the Jeans radius

RJ = ( 15kT
4πρμmHG )

1/2

Or at home if we don’t have time.  
It’s simple algebra, but this radius comes up often in both 

observation and simulation papers.
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Calculate Jeans’ mass for an average molecular 
cloud. Typically, molecular clouds have masses 
on the order of 1000 ︎ or more, temperatures 
on the order of 10K and number densities of 
approximately 1000 H  molecules per cm . 

Consider that  g 
And that the solar mass g 
The Boltzmann constant   

M⊙

2
3

mH = 1.674 × 10−24

M⊙ = 1.9891 × 1033

k = 1.380658 × 10−9J/K
G = 6.674 × 10−11 N m2 kg−2

Jeans’ Mass example:

What will be the density of the cloud? In units of 
[g cm ]−3

ρ = 2mHN/V ≈ 3 × 10−21 g cm−3

The Jeans’ mass will be:

MJ ≈ 20M⊙

So this cloud will collapse  
(it’s much more massive than  — in fact, 
several stars will form from this single cloud)

MJ
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Calculate Jeans’ density for a diffuse hydrogen 
(or HI) cloud. Typically, diffuse hydrogen clouds 
have masses of less than 100 ︎, temperatures 
on the order of 100K and number densities of 
less than 1000 H atoms per cm . 

Consider that  g 
And that the solar mass g 
The Boltzmann constant   

M⊙

3

mH = 1.674 × 10−24

M⊙ = 1.9891 × 1033

k = 1.380658 × 10−9J/K
G = 6.674 × 10−11 N m2 kg−2

Jeans' Density example:

What will be the density of the cloud? In units of 
[g cm ]−3

ρ = mHN/V ≈ 2 × 10−21 g cm−3

Its Jeans’ density will be:

ρJ ≈ 10−18 g cm−3

As this neutral hydrogen cloud is less dense 
than the Jeans’ density, it will be stable and it 
will not collapse.



Third Example of Classical Mechanics 
In Astrophysics

HOW LONG DOES IT TAKE FOR A FLUID (e.g INTERSTELLAR CLOUD) COLLAPSE?
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Free-Fall Time

The Free-fall time is defined as the time it takes a cloud  
to collapse from an original shape to a single point

Pressure, magnetic fields, and momenta will all affect real cloud collapse 
times !!! 

(Also, hydrostatic equilibrium will kick in much earlier than the collapse to a 
single point — in which case a stellar black hole would form and we’d need 

to take general relativity into account)
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Free-Fall Time derivation
Let’s consider what happens to a small mass m, initially at rest on the 

surface of a spherical cloud, freely contracting under gravity

The Kinetic energy 
of m is equivalent 
to the difference 
b e t w e e n t h e 
collapsed and the 
initial gravitational 
potential energy

K =
1
2

m ( dr
dt )

2

= Uf − U0 =
GMm

r
−

GMm
R
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Solving w.r.t. time
• We can isolate the velocity of 
the particle:

dr
dt

= − ( GMm
r

−
GMm

R )
1/2

• H e n c e o b t a i n i n g a 
differential equation for 
the free fall time

tff = − ∫
0

R ( GMm
r

−
GMm

R )
−1/2

dr

• Let’s perform a change of 
variable :x = r/R

tff = ( R3

2GM )
1/2

∫
1

0 ( x
1 − x )

1/2

dx

• You may recall that’s a 
definite integral equal to  

• Assume the mass for a 
homogeneous cloud:

π/2

M =
4
3

πR3ρ
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Free-Fall Time

tff =
π
2 ( R3

2GM )
1/2

= ( 3π
32Gρ )

1/2

Despite the assumptions and crude model, this expression to first 
order identifies reliable cloud collapse timescales.
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Free -Fall time example

How long will it take for a molecular cloud 
as heavy as the sun to collapse? 

Calculate the Jeans’ density:
tff = ( 3π

32Gρ )
1/2

≈ 50 000 yr

ρJ = ( 5kT
μmHG )

3

( 3
4πM2 )

ρ ≈ 2 × 10−18 g cm−3


