EDA.GJERGO@WHU.EDU.CN – SEPTEMBER 10TH, 2020

11140

Classical Mechanics course by Prof. Fan XiLong (范锡龙) Instructor: Dr. Eda Gjergo Physics Department, Wuhan University – Fall 2020

Outline

PART 1

- 1. Overview on the Universe
- 2. Newtonian Mechanics
 - 1. Hydrostatic Equilibrium
 - 2. The Virial Theorem
 - 3. The Jeans Criterion
 - 4. Free-Fall Time

PART 2

- 1. Galaxy rotation curves
- 2. Beyond Newtonian Cosmology
 - 1. Relativity
 - 2. Standard Cosmology
 - 3. Theories of modified gravity
- 3. Cosmological Simulations

Who am I?

- Postdoc in the Chemical Evolution of Galaxies at Wuhan University, China
- PhD from University of Trieste, Italy: included a Dust Evolution model in Cosmological **Simulations of Galaxy Clusters**
- National Lab in Chicago: Supernova
 - selection algorithm efficiency for DES
 - filter transmission efficiency for LSST
 - modified gravity vs quintessence theory

EDA GJERGO – WUHAN UNIVERSITY – APPLICATIONS OF NEWTONIAN MECHANICS IN ASTRONOMY – SEPTEMBER 10TH, 2020

Group ‡Perio	→1 d	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	1 H		Big spa	Bang Ilatio	n		α-ric weal	h free k s-pre	ze-ou	ıt, νp· ?	proce	ess	uns	stable			
2	3 Li	4 Be	evo α-el	lved (lemer	giant I ts	stars	s-pro light	neut	ron-ca	apture	e		5 B	6 C	7 N	8 0	9 F
3	11 Na	12 Mg	ma: iror	ssive 1 grou	stars Ip		r-pro	ary p ocess	roces	5			13 Al	14 Si	15 P	16 5	17 Cl
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br
5	37 Rb	-38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53
6	55 Cs	56 Ba	*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Ti	82 Pb	83 Bi	84 Po	85 At
7	87 Fr	88 Ra	**	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	11 Uu
		÷	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			La	Ce	Pr	Nd	I Pm	Sm	Eu	Gd	Tb	Dv	Hol	Erl	Tml	Yb	Lu

18

Who am I?

- Postdoc in the Chemical Evolution of Galaxies at Wuhan University, China
- PhD from University of Trieste, Italy: included a Dust Evolution model in Cosmological Simulations of Galaxy Clusters
- National Lab in Chicago: Supernova
 - selection algorithm efficiency for DES
 - filter transmission efficiency for LSST
 - modified gravity vs quintessence theory

© Images: NASA/ESA (NGC4214, M27, Cepheus B cloud) Graphics: Eda Gjergo

Who am I?

- Postdoc in the Chemical Evolution of Galaxies at Wuhan University, China
- PhD from University of Trieste, Italy: included a Dust Evolution model in Cosmological Simulations of Galaxy Clusters
- Undergraduate research at IIT and Argonne National Lab in Chicago: Supernova Cosmology
 - selection algorithm efficiency for DES
 - filter transmission efficiency for LSST
 - modified gravity vs quintessence theory

© Andrew Colvin – JPL

© Andrew Colvin – JPL

Size of the Universe Milky Way Galaxy

stellar Neighborhood

NGC 6744

NGC 5033

Canes Groups

irgo III Groups

/Irgo Cluster

o Supercluster

Local Superclusters

I Superclusters

Observable Universe

Scale of Cosmic Objects

https://www.htwins.net/scale2/

Scale of Cosmic Objects

Classical Mechanics Applications in Astronomy Eda Gjergo, Wuhan University (2020)

Name	Symbol	Conversion	Commonly applied to		
			the following scales		
Astronomical Unit	AU	$\sim 1.4959787066 \times 10^{11}~{\rm m}$	Solar system		
		~ 8.3 light minutes			
Light-year	ly	$9.460730472 \times 10^{15}~{\rm m}$	universal		
Parsec	\mathbf{pc}	$3.0856776 \times 10^{16}~{\rm m}$	stars		
		$3.26167 \ ly$			
kiloparsec	kpc	$10^3 { m \ pc}$	galaxies		
megaparsec	Mpc	$10^6 { m \ pc}$	galaxy clusters		
gigaparsec	Gpc	$10^9 { m pc}$	large scales		

Table 1: Common units in astronomy.

Our Universe

Image Credit: NASA/WMAP Science team. Edit: Subaru Prime Focus Spectrograph

The composition of the Universe changed with time

© DESC

The composition of the Universe changed with time

© DESC

Our Galaxy: the Milky Way

https://astrobob.areavoices.com

The Milky Way observed at different wavelengths

Image Credit: Stefan Payne-Wardenaar. Data: ESA/GAIA

EDA GJERGO – WUHAN UNIVERSITY – APPLICATIONS OF NEWTONIAN MECHANICS IN ASTRONOMY – SEPTEMBER 10TH, 2020

Our Galaxy: the Milky Way

Video of the Milky Way Warp: the dynamics of our galaxy is very much active!

(J. Skowron / OGLE / Astronomical Observatory, University of Warsaw)

First Example of Classical Mechanics In Astrophysics HOW ARE STARS HELD TOGETHER

EDA GJERGO – WUHAN UNIVERSITY – APPLICATIONS OF NEWTONIAN MECHANICS IN ASTRONOMY – SEPTEMBER 10TH, 2020

What holds stars together?

Credit: Brian Woodahl (http://woodahl.physics.iupui.edu/Astro105/)

... precisely inward pull of gravity.

where the overlying

 An equilibrium between forces of pressure and gravity

Forces on a small mass component within stars

Image Credit: Chris Mihos (http://burro.cwru.edu/Academics/Astr221)

- We assume spherical symmetry in the following computation.
- The cylinder represents an infinitesimal volume of a star
- The bottom is closer to the center of the star, the top is closer to the surface.
- The bottom surface of the cylinder is at a distance *r* from the center of the star.
- (it is drawn as a cylinder, but the derivation holds for any shape)

Forces on a small mass component within stars

Image Credit: Chris Mihos (http://burro.cwru.edu/Academics/Astr221)

- This volume of star perceives pressure from top and bottom
- (we ignore the pressure from the sides: due to homogeneity the forces cancel out)
- It is also subject to gravity toward the center of the star.
- We can define the mass m of this element as a product between its density ρ and volume V = dr dA

Forces on a small mass component within stars

Image Credit: Chris Mihos (http://burro.cwru.edu/Academics/Astr221)

• The net forces on this mass elements are zero, therefore:

$$P(r)dA - P(r + dr)dA - F_{grav} =$$

$$-[P(r + dr) - P(r)]dA - ma_g =$$

$$-dPdA - \left[\rho(g)(drdA)\right]g(r) =$$

Hydrostatic Equilibrium

- Both g the gravitational accel positive
- So the pressure decreases with the higher the pressure)
- But g can also be expressed as:

$$F_{grav} = mg(r) = --$$

• Both g – the gravitational acceleration –, and ρ – the star's density – are

• So the pressure decreases with increasing radius (the closer to the center,

GM(r)

The second s

The Virial Theorem Derivation

• Multiply both sides by the volume of a sphere of radius r. 4

•
$$V = -\pi r^3$$

shell between *r* and r + dr?

 $\mathrm{d}M = \rho(r) \left(4\pi r^2 \mathrm{d}r\right)$

How would you express the rate of change of the mass inside a spherical

The RHS: substitute volume, acceleration, and differential

$$V dP = -\left(\frac{4}{3}\pi r^3\right)\rho(r)\left(\frac{GM(r)}{r^2}\right)\left(\frac{dM}{4\pi r^2\rho(r)}\right)$$

• We substitute the radius-dependent expression for volume, the gravitational acceleration g(r), and we switch the differential from radius dr to mass dM. GM(r)

VdP = -

- Now change variables the right hand side (RHS) for the differential from radius dr to mass dM.
- But the integral of the RHS is proportional to the gravitational potential energy U_{grav}

$$\frac{GM(r)}{3r}dM$$

$$U_{grav} =$$

 $\int^{M_{star}} GM(r)$

Gas, thermal energy, and pressure: simplifying the LHS

VdP = -

• How can we tackle the pressure differential in the left hand side (LHS)? • Integrate VdP by parts.

 $\int_{P}^{0} V \mathrm{d}P \, . = PV|$

• We can now integrate w.r.t. volume instead of pressure.

$$\frac{1}{3} \frac{GM(r)}{r} dM$$

$$\int_{center}^{surface} \int_{0}^{V_{surface}} P dV$$

A bit of statistical physics

- What relation holds in an ideal gas between pressure P, volume V, temperature T, and number of particles N?
- The equipartition theorem relates the average kinetic energy density ϵ of particles in a gas at temperature T with:
- So it follows that the LHS:

•
$$P = \frac{kNT}{V}$$

• Where $k = 1.380658 \times 10^{-9} J/K$ is the Boltzmann constant.

$$\epsilon = \frac{3}{2}kT\frac{N}{V}$$

$$PdV = \int_{0}^{V_{tot}} \frac{kNT}{V} dV = \frac{2}{3} \int_{0}^{V_{tot}} \epsilon dV$$

Virial Theorem: Putting it all together

- The integral is none other than the total thermal energy *K* of the star:
- So the LHS:
- While the RHS:

• Combining the two:

$$K = \int_0^{V_{tot}} \epsilon \mathrm{d}V$$

$$V\mathrm{d}P = -\int_{0}^{V_{tot}} P\mathrm{d}V = -\frac{2}{3}K$$

$$-\frac{1}{3}\int_{0}^{M_{star}}\frac{GM(r)}{r}\mathrm{d}M = \frac{1}{3}U_{grav}$$

$$U_{grav} = 0$$

- Governs gravitational collapse of gas
- Determines the minimum mass of a star
- Helps compute the total mass of galaxies (analytic solutions for spirals and ellipticals)
- Governs timescales of structure formation

The Virial Theorem

- It also has limitations
 - I applies only to systems of point particles.
 - It does not apply to particles that are not gravitationally bound.

Example to work out in class

Calculate the potential gravitational energy of a star of mass M_* and radius R_* assuming it possesses a constant density ρ

See companion handout for sources

Calculate the potential gravitational energy of a star of mass M_* and radius R_* assuming it possesses a constant density ρ

HINTS

- How do you express the gravitational energy?
- What is the average density within the radius *r*?
- From the previous equation, how can you express r?
- Write the gravitational energy in terms of M(r) and solve the integral.
- Given that we assume the density is constant, how would you express it in terms of total mass and radius of the star?
- Put it all together to answer the problem

NEWTONIAN MECHANICS IN ASTRONOMY – SEPTEMBER 10TH, 2020

Second Example of Classical Mechanics In Astrophysics

UNDER WHICH PHYSICAL CONDITIONS DOES A FLUID (LIKE AN INTERSTELLAR CLOUD) COLLAPSE?

To answer the question: **Apply the Virial Theorem!**

- When will gravitational energy dominate over thermal energy?
- Under this condition, how will the cloud behave?
- How do we express the gravitational potential energy, assuming homogeneous density?

 $-U_{grav} > 2K$

It will collapse

3 GM²_{*} 5 R_{*}

What about the thermal energy? $K = \frac{3}{2}kNT$ μm_H

- Again, from the equipartition theorem:
- We can express the number of particles Nas a function of the mean molecular weight μ . m_H is the weight of a Hydrogen atom

• From the previous exercise, what is R for this isothermal gas at uniform density?

 $R = \frac{M(r)}{m}$

The Jeans Criterion

Let's write the Virial Theorem, substituting these quantities:

• Lastly, by isolating *M*, we obtain the Jeans criterion:

$$M > M_J = \left(\frac{5kT}{\mu m_H G}\right)^{3/2} \left(\frac{3}{4\pi\rho}\right)^{1/2}$$

• Or equivalently for density:

$$\rho > \rho_J = \left(\frac{5kT}{\mu m_H G}\right)^3 \left(\frac{3}{4\pi M^2}\right)$$

In-class exercise: derive the Jeans radius

- It's simple algebra, but this radius comes up often in both
 - observation and simulation papers.

Or at home if we don't have time.

 $R_J = \left(\frac{15kT}{4\pi\rho\mu m_H G}\right)^{1/2}$

Jeans' Mass example:

Calculate Jeans' mass for an average molecular cloud. Typically, molecular clouds have masses on the order of 1000 M_{\odot} or more, temperatures on the order of 10K and number densities of approximately 1000 H₂ molecules per cm³.

Consider that $m_H = 1.674 \times 10^{-24} \text{ g}$ And that the solar mass $M_{\odot} = 1.9891 \times 10^{33}$ g The Boltzmann constant $k = 1.380658 \times 10^{-9} J/K$ $G = 6.674 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$

- What will be the density of the cloud? In units of $[g cm^{-3}]$
- $\rho = 2m_H N/V \approx 3 \times 10^{-21} \,\mathrm{g \, cm^{-3}}$

The Jeans' mass will be:

$$M_J \approx 20 M_{\odot}$$

So this cloud <u>will</u> collapse

(it's much more massive than M_I – in fact, several stars will form from this single cloud)

Jeans' Density example:

Calculate Jeans' density for a diffuse hydrogen (or HI) cloud. Typically, diffuse hydrogen clouds have masses of less than 100 M_{\odot} , temperatures on the order of 100K and number densities of less than 1000 H atoms per cm^3 .

Consider that $m_H = 1.674 \times 10^{-24} \text{ g}$ And that the solar mass $M_{\odot} = 1.9891 \times 10^{33}$ g The Boltzmann constant $k = 1.380658 \times 10^{-9} J/K$ $G = 6.674 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$

- What will be the density of the cloud? In units of $[g cm^{-3}]$

 $\rho = m_H N/V \approx 2 \times 10^{-21} \,\mathrm{g \, cm^{-3}}$

Its Jeans' density will be:

$$\rho_J \approx 10^{-18} \,\mathrm{g \, cm^{-3}}$$

As this neutral hydrogen cloud is less dense than the Jeans' density, it will be stable and it will <u>not</u> collapse.

Third Example of Classical Mechanics In Astrophysics

HOW LONG DOES IT TAKE FOR A FLUID (e.g INTERSTELLAR CLOUD) COLLAPSE?

Free-Fall Time

- Pressure, magnetic fields, and momenta will all affect real cloud collapse times !!!
- (Also, hydrostatic equilibrium will kick in much earlier than the collapse to a single point – in which case a stellar black hole would form and we'd need to take general relativity into account)

The Free-fall time is defined as the time it takes a cloud to collapse from an original shape to a single point

Free-Fall Time derivation

Let's consider what happens to a small mass m, initially at rest on the surface of a spherical cloud, freely contracting under gravity

The Kinetic energy of m is equivalent to the difference between the collapsed and the initial gravitational potential energy

$$U_f - U_0 = \frac{GMm}{r} - \frac{GMm}{R}$$

• We can isolate the velocity of the particle:

$$\frac{\mathrm{d}r}{\mathrm{d}t} = -\left(\frac{GMm}{r} - \frac{GMm}{R}\right)^{1/2}$$

 Hence obtaining a differential equation for the free fall time

$$t_{ff} = -\int_{R}^{0} \left(\frac{GMm}{r} - \frac{GMm}{R}\right)^{-1/2} dr$$

Solving w.r.t. time

 Let's perform a change of variable x = r/R:

$$t_{ff} = \left(\frac{R^3}{2GM}\right)^{1/2} \int_0^1 \left(\frac{x}{1-x}\right)^{1/2} dx$$

- You may recall that's a definite integral equal to $\pi/2$
- Assume the mass for a homogeneous cloud:

$$M = \frac{4}{3}\pi R^3 \rho$$

Free-Fall Time

Despite the assumptions and crude model, this expression to first order identifies reliable cloud collapse timescales.

Free - Fall time example

How long will it take for a molecular cloud as heavy as the sun to collapse?

Calculate the Jeans' density:

$$\rho_J = \left(\frac{5kT}{\mu m_H G}\right)^3 \left(\frac{3}{4\pi M^2}\right)$$

 $\rho \approx 2 \times 10^{-18} \text{ g cm}^{-3}$

$$t_{ff} = \left(\frac{3\pi}{32G\rho}\right)^{1/2} \approx 50\ 000\ y$$